#1763. C++-数学-圆周率(π)

C++-数学-圆周率(π)

Background

Description

圆周率,是指圆的周长与直径的比值,即圆周率=圆周长÷直径,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比,即圆周率=圆面积÷半径2是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的最小正数x。 圆周率用希腊字母π(读作[pa?])表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用九位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。 1665年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其 [24]中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。2015年,罗切斯特大学的科学家们在氢原子能级的量子力学计算中发现了圆周率相同的公式。 2019年3月14日,谷歌宣布圆周率现已到小数点后31.4万亿位。 2021年8月17日,美国趣味科学网站报道,瑞士研究人员使用一台超级计算机,历时108天,将著名数学常数圆周率π计算到小数点后62.8万亿位,创下该常数迄今最精确值记录。

Format

Input

Output

Samples



Limitation

1s, 1024KiB for each test case.